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ABSTRACT 

We show that in an abelian top31ogical group sub3eries convergence depends 
only on the Borel field generated by the topology. We also prove a result about 
measurability of a limit for a paintwise converging sequence of measurable 
mappings into an analytic topological space. 

In the first part  of  this paper we make an improvement of  a result due to the 

second author (see [2], th. 2, p. 246). In the second part we prove a theorem about 

measurability of  a limit function. We use this result which may also have some 

interest in itself. In the third part we show that the results may be considerably 

improved if we restrict ourselves to the category of  analytic abelian topological 

groups. In both the first and th e third part  we obtain improvements of  results due 

to Kalton, which was obtained by a different method (see I-5]). 

We consider the Cantor group K = { 0, 1 }s .  Equipped with the usual product 

topology and product group structure K is a compact metrizable abelian topo- 

logical group. It  may be convenient to identify in the natural way elements of  K 

with subsets of  ~7. A mapping ~b from K into an abelian group G is said to be 

finitely additive if ~b(x + y) = ~b(x) + ~b(y) for all disjoint x and y in K (that means 

for all x and y fulfilling x y  = 0). For  a s K ,  we use the notation K a for the com- 

pact subgroup of  K consisting of  those elements x in K for which x a  = x .  K o  ~ K 

is the countable subgroup of  K consisting of  all elements of  finite support. For  

the n ' th coordinate of  an element x in K we write x(n) ,  e m is the element in K for 

which e,,(n) = b , , , ,  and e the element for which e(n) = 1 for all n.  
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A subset S _ G of an abelian topological group (G, + ,  0) is called a-bounded 

if for every neighbourhood U in G, S may be covered with countably many trans- 

lates of U. 

If (X, ~) is a Hausdorff topological space then a subset A ___ X has the Baire 

property (by definition) if there exist an open set U ~ X such that the set 

A < U = (A\ U) • (U\A) is of the first category in X (contained in a countabie 

union of closed sets with empty interior). The system of sets with the Baire prop- 

erty forms the a-field of BP-measurable sets (containing of course the Borel sets). 

THEOREM 1. Let (G, + ,0) be an abelian Hausdorff topological group and 

d? : K ~ G a finitely additive mapping. Suppose either that q5 is Borel measur- 

able or alternatively suppose that d~(K) is a a-bounded subset of G and for any 

a ~ K the restriction of ~p to K a is relatively BP-measurable. Then for any x in 

K, we have: 

c~(x) = ~ x(n)~(en) 
n = l  

where the sum converges uniformly for x ~ K with respect to the uniform struc- 

ture on G induced by the group operation. 

PROOF. First we assume that the group G is separable and metrizable. Obvi- 

ously we may as well assume that d is an invariant complete metric on G genera- 

ting the topology. We assume furthemore that q~ has the weaker measurability 

property stated in the theorem. 

First we show that the mapping 

~b(x) = lim ~ x(n)~(en) 
p~'aO 11=1 

is well defined since the limit exists uniformly in x ~ K with respect to the uniform. 

structure induced by the group operation. Suppose this is not the case. Then it 

is easy to see that there exist an e > 0 and a sequence Yi ~ Ko of disjoint elements 

such that d(~(y~), 0) > e for all i E ~7. As the topology of G has a countable base 

and q~ is BP-measurable we can find a dense G~ set A in K such that the restriction 

of q~ to A is continuous. Since K0 is countable we may assume that A is invariant 

under translations with elements in Ko. Let x ~ A and put 

t x~ = x + y + xy~ 
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x~ = x + xyi  
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(the addition with respect to the group structure in K). Since A is invariant under 

translations with elements in K o both x; and x~ belongs to A. Clearly we have 
I I  I I  x~ ~ x and xi ~ x and therefore r - r ~ 0 in G for i ~ 0% but xi and 

Yi are disjoint with sum x'i and therefore 

d ( r  r = d(r => e .  

This contradiction shows that ~ is indeed well defined in the above sense. 

Clearly ff is continuous and finitely additive. Hence the mapping r  = r 

- ~k(x) is BP-measurable and finitely additive and furthermore r = 0 for all 

n. It follows that q~'(x) = ~b'(y) for all x and y in K for which {n 6 ~7 [ x(n) # y(n)} 

is finite. The topological zero-one law (see [2], th. 1, p. 246; note that this law is 

valid also for mapping with values in a Hausdorff space with the second axiom 

of  countability as follows immediately from the proof)  now shows that r  is 

equal to a constant g e G on a dense G6 subset A of  K. By choosing x,y,  z ~ A 

with yz  = 0 and x = y + z (see [2], lemma, p. 247) it is seen that 9 = 0. Since 

also (e +A) is a dense G6 set, A n ( e  + A) is non empty, and so there is x, y e A  

with x + y = e (with respect to the group operation on K). This means that x 

and y are disjoint with union e. From this we conclude r  0. We want to 

show that r  = 0 for all x e K. For  a fixed x in K let us define Cx(Y) = r 

As the mapping y ~ xy  from K to Kx is open and continuous it is easy to see 

that it is (BP(K) ,BP(K: , ) )  measurable, hence r  : K  ~ G is BP-measurable. A 

similar argument as above now yields r = r  = 0. Hence r  vanishes, and 

this concludes the proof  in this special case where G is separable and metrizable. 

It is clearly enough to obtain the conclusion of  the theorem for any weaker 

topology ~ on G which makes G into a metrizable topological group (for an), 

r  V in G there exists a topology ~ on G with these properties 

for which V is a ~-neighbourhood).  By a suitable division we may even assume 

that ~ is Hausdorff. The second part  of  the theorem is now easily reduced to the 

case already proved, as a a-bounded subset of  a metrizable group is separable. 

Suppose now that r is Borel measurable. We reduce to the metrizable case as 

before. From [3] it follows that r  is automatically separable in G. Then we 

have reduced to the case already proved. Note that the result of  [3] does not 
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depend on any "pathological" set-theoretical axioms but just the axiom of choice 

(compactness arguments) and the usual (naive) set theory not including the con- 

tinuum hypothesis. 

COROLLARY. Subseries convergence in an abeIian topological group depends 

only on the Borel structure generated by the topology. 

PROOF. This follows immediately from the theorem. 

Let (X,~)  be a measurable space and (Y,r a Hausd:rff topological space. 

Let f , :X--> Y be a sequence of (bR,~(Y)) measurable functions. Suppose that 

the limit point fog(x) = lim,_.o~ fn(x) exists in Y for all x ~ X. What can we say 

about the measurability properties of the limit function f~ : X --* Y 9. It is easy to 

show that if the space (Y, Co) is regular and fully Lindel6f then f is (~, ~(Y)) meas- 

urable. It is not known whether this need to be the case if (Y, ~) is an analytic 

Hausdorff topological space. 

If ~ is a Bore1 structure on a set X then the paving CS(gr is the system of all 

complements of sets which are Souslin sets with respect to ~ .  The paving S(~) 

~CS (~) is a Borel structure which in general is strictly finer then ~ but coincides 

with ~ if ~ is the Borel structure of an analytic Hausdorff sFace (a smooth Borel 
structure). 

THEOREM 2. Let the situation be as above. I f  the space (Y, 0) is an analytical 

Hausdorff space then foo is measurable with respect to the Borel field ~(Y)  on 

Y and the a-field S(9~) ~ CS(~) on X .  

PROOF. Let A denote the diagonal in Y • Y. As Y is Hausdorff, for all 

y E (Y x Y)\A there exist open sets Oy and Uy in Y for which y ~ Oy x Uy and 

(Oy x Uy) c3 A = ~ .  By using the fully Lindel6f property of Y x Y (which is 

analytic) we now conclude that there exists a sequence O,, U, of open sets in Y 

such that unO, • U, = (Y x Y)\A. Hence the set of finite intersections of sets 

in the sequences On and Un in a countable base Pn for a Hausdorff topology 

coarser than the topology r In the following we consider Y with this topology 

9 ~. As ~ __ 0 we still have fn ~ f pointwise, and because of the Borel isomorphism 

theorem ([4], co. II 5.3 p. 83) ~ and 0 generates the same Borel field ~(Y). 

We now use the "Cantor group technique" to describe the function f~o. Let us 

define the function x ~ k x from X to K by : 

k (n) = 1r 3 m o e ~ : m  >= mo :*-fm(x)~P~. 
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The function k is ( ~ , ~ ( K ) )  measurable. This follows easily from the measur- 

ability of  the fin's and the equality : 

{xeX lk~ (n )=  1 } =  U A f ~ I ( P ~ )  
q = l  ra=q 

(c denotes set-theoretical complement). Since k is measurable the inverse image by 

k of  any coanalytic set in K belongs to CS(~). The equality : 

oo 

( U kx(n)f,) c = {f~(x)} 
n = l  

is easily proved. Now let B be a Borel set in Y. Then we have : 

f~X(B) = {x e X [ {fo~(x)} -- B} = {x e X 1( 0 k~(n)P,) c c B} 
. = /  

= { x e X l B C l ( O  k~(n)P.) # ~J}~ = k- ' (SI)  
. = 1  

where $1 is the projection on the first coordinate of  the set : 

S =  { (k ,y )eK x g [ y e B C \ ( U  k(n)P,)} 
. = 1  

= {(k,y) l y e B  ~} (3((k ,y)[ye 0 k(n)P,} ~. 
. = l  

As the intersection of  a Borel set and a closed set S is a Borel set in K x Y and 

therefore S] is coanalytic in K, hence f ~ ( B )  = k-1(S~)E CS(N). As also B ~ is 

a Borel set in r we have f -  I(B~) e CS(~), that is we h a v e J -  l(B) e CS(~) (3 S(~)  

which finishes the proof. 

We consider an abelian group (G,+).  Suppose that N is any Hausdorfftopology 

on G and g,(n e lg) is a sequence of  elements in G. The series ]E ,~g ,  is called 

~-subseries convergent if lim~_.~o]~,q=l x(n)g, exists with respect to ~-topology 

for all x in K. ~ is called a group topology if (G, ~ )  is a topological group, 

and it is called translation invariant if all translations are homeomorphisms 

with respect to ~-topology. 

The following theorem is an improvement of  a result of  N. J. Kalton (see [5] 

th. 3, p. 407). 

THEOREM 3. Let ~ and 0 be two topologies on G. Suppose ~ =_ O, 0 is an 

analytic group topology and ~ is translation invariant and Hausdorff. Then 

~-subseries convergence is equivalent with O-subseries convergence. 
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PROOF. Suppose ]~9, is ~-subseries convergent. We define a mapping ~b: K ~ G 

by 

r = ~ - lim ~ x(n)g, = ~ - lira Sq(x). 
q'-* vO n = l  q--~ co 

For  every q e ~7 the mapping s o : K -~ G is continuous (for ~ or O) because it 

only takes a finite number of  values on sets which are open and closed. From 

Theorem 2 we conclude that ~b is Borel measurable with respect to the Borel 

structure generated by the ~ topology which equals the Borel structure generated 

by the O topology since both are smooth (note that the Borel structure on K is 

smooth). By using that ~ is translaticn invariar, t it is eas:y soon teat for 

x ~ Ko, y ~ K and xy  = 0 we have tk(x + y) = qS(x) + q~(y). By inspection of the 

proof  of  Theorem 1 it is seen that the measurability of  ~b and the preceding kind 

of  additivity of  q~ is enough to ensure that there exist a dense Ga set A _~ K which 

is invariant under translations with elements from Ko such that the restriction oftk 

to A is continuous with respect to O-topology, (note that the Borel structure of 

and r coincide). Moreover we may conclude that Y-.x(n)9,, is a uniform O-Cau- 

chy series (uniform for x ~ K). If we choose x, y, z e A with yz  = 0 and y + z = x 

(see the proof  of  Theorem 1) and put yq(n) = y(n) for n = i, ... q, and y,,(n) = 0 

for all other n we have Yo + z ~ A and y~ + z ---, x for q ~ oo, hence 

d?(yq + z) = dp(yq) + dp(z) = so(y ) + dp(z) ~ (o(x) 

for O-topology. So we see that there is an element y e A for which O - lim._.oj,(y) 

exists in G and as the topology ~ is Hausdorff this limit must be ~b(y). We want 

to show that r = E,~=~ x(n)9, for all x e with respect to O-topology. As in the 

proof  of  Theorem 1, it is seen that it is enough to consider the case where G is 

separable and metrizable and then to complete G to t3. We may define a mapping 

~ : K--.  G by: 

~(x) = O - lim sq(x). 
g-'~ r 

Since r is continuous the mapping ~b' =~b-~, is Borel measurable and has the 

same additivity properties as q~ and in the same way as in the proof  of  Theorem 1 

we see that we may assume that qY(x) = 9 for all x E A .  By choosing an y e A  

for which O - lim,_.~ sq(x) = qS(y) we get tk(y) = ~(y) that is O = 0. Now the 

proof  can be finished exactly as the proof  of  Theorem 1. 
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It  may very well be that  the above result could be obtained without  the assump- 

t ion that  N is t ranslat ion invariant.  This is open at the time of  writing. 
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